

PHP LECTURE NOTES: UNIT-I

PREPARED BY

Dr.A.DEVI

Associate Professor

Department of Computer Applications

DR.SNSRACS

UNIT-I

 Introduction to PHP & Features

 PHP Scripts

 Data Types

 Variables

 Operators

 Control Structures

Introduction to PHP & Features

PHP is a server scripting language, and a powerful tool for making dynamic and interactive Web

pages.

PHP is a widely-used, free, and efficient alternative to competitors such as Microsoft's ASP.

Example

<html>

<body>

<?php

echo "My first PHP script!"; ?>

</body>

</html>

What You Should Already Know

Before you continue you should have a basic understanding of the following:

• HTML

• CSS

• JavaScript

What is PHP?

• PHP is an acronym for "PHP: Hypertext Preprocessor"

• PHP is a widely-used, open source scripting language

• PHP scripts are executed on the server

• PHP is free to download and use

What is a PHP File?

• PHP files can contain text, HTML, CSS, JavaScript, and PHP code

• PHP code are executed on the server, and the result is returned to the browser as plain

HTML

• PHP files have extension ".php"

<?php

// PHP code goes here

?>

What Can PHP Do?

• PHP can generate dynamic page content

• PHP can create, open, read, write, delete, and close files on the server

• PHP can collect form data

• PHP can send and receive cookies

• PHP can add, delete, modify data in your database

• PHP can be used to control user-access

• PHP can encrypt data

With PHP you are not limited to output HTML. You can output images, PDF files, and even

Flash movies. You can also output any text, such as XHTML and XML.

Why PHP?

• PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)

• PHP is compatible with almost all servers used today (Apache, IIS, etc.)

• PHP supports a wide range of databases

• PHP is free. Download it from the official PHP resource: www.php.net

• PHP is easy to learn and runs efficiently on the server side

To start using PHP, you can:

• Find a web host with PHP and MySQL support

• Install a web server on your own PC, and then install PHP and MySQL

Use a Web Host with PHP Support

• If your server has activated support for PHP you do not need to do anything.

• Just create some .php files, place them in your web directory, and the server will

automatically parse them for you.

• You do not need to compile anything or install any extra tools.

• Because PHP is free, most web hosts offer PHP support.

• Set Up PHP on Your Own PC

However, if your server does not support PHP, you must:

• install a web server

• install PHP

• install a database, such as MySQL

PHP Scripts Basic PHP

Syntax

• A PHP script can be placed anywhere in the document.

• A PHP script starts with <?php and ends with ?>:

http://www.php.net/

Example

<html>

<body>

<h1>My first PHP page</h1>

<?php

echo "Hello World!";

?>

</body>

</html>

• PHP statements end with a semicolon (;)

Comments in PHP

A comment in PHP code is a line that is not read/executed as part of the program. Its only

purpose is to be read by someone who is looking at the code.

Comments can be used to:

• Let others understand what you are doing

• Remind yourself of what you did - Most programmers have experienced coming back to

their own work a year or two later and having to re-figure out what they did. Comments

can remind you of what you were thinking when you wrote the code.

Example

<html>

<body>

<?php

// This is a single-line comment

This is also a single-line

comment /*

This is a multiple-lines comment

block that spans over multiple lines

*/

// You can also use comments to leave out parts of a code line

$x = 5 /* + 15 */ + 5;

 echo $x;

?>

</body>

</html>

Example

<html>

<body>

<?php

ECHO "Hello World!
";

echo "Hello World!
";

EcHo "Hello World!
";

?>

</body>

</html>

In the example below, only the first statement will display the value of the $color variable

(this is because $color, $COLOR, and $coLOR are treated as three different variables):

Example

<html>

<body>

<?php

$color = "red";

echo "My car is " . $color . "
";

echo "My house is " . $COLOR .

"
"; echo "My boat is " . $coLOR .

"
";

?>

</body>

</html>

Data Types

• Variables can store data of different types, and different data types can do

different things.

PHP supports the following data types:

• String

• Integer

• Float (floating point numbers - also called double)

• Boolean

• Array

• Object

• NULL

• Resource

PHP String

• A string is a sequence of characters, like "Hello world!".

• A string can be any text inside quotes. You can use single or double quotes:

Example

<html>

<body>

<?php

$x = "Hello world!";

$y = 'Hello world!';

echo $x;

echo "
";

echo $y;

?>

</body>

</html>

OUTPUT:

Hello world!

Hello world!

String Functions

• Get The Length of a String

• The PHP strlen() function returns the length of a string.

• The example below returns the length of the string "Hello world!":

Example

<html>

<body>

<?php

echo strlen("Hello

world!"); ?>

</body>

</html>

OUPUT:

12

Count The Number of Words in a String

The PHP str_word_count() function counts the number of words in a string:

Example

<html>

<body>

<?php

echo str_word_count("Hello world!");

?>

</body>

</html>

OUTPUT:

2

Reverse a String

• The PHP strrev() function reverses a string:

Example

<html>

<body>

<?php

echo strrev("Hello world!");

?>

</body>

</html>

OUTPUT:

!dlrow olleH

Search For a Specific Text Within a String

• The PHP strpos() function searches for a specific text within a string.

• If a match is found, the function returns the character position of the first match. If no

match is found, it will return FALSE.

• The example below searches for the text "world" in the string "Hello world!":

Example

<html>

<body>

<?php

echo strpos("Hello world!", "world");

?>

</body>

</html>

OUTPUT: 6

Replace Text Within a String

• The PHP str_replace() function replaces some characters with some other

characters in a string.

• The example below replaces the text "world" with "Dolly":

Example

<html>

<body>

<?php

echo str_replace("world", "Dolly", "Hello world!");

?>

</body>

</html>

OUTPUT:

Hello Dolly!

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and

2,147,483,647.

Rules for integers:

• An integer must have at least one digit

• An integer must not have a decimal point

• An integer can be either positive or negative

• Integers can be specified in three formats: decimal (10-based), hexadecimal (16- based -

prefixed with 0x) or octal (8-based - prefixed with 0)

• In the following example $x is an integer. The PHP var_dump() function

returns the data type and value:

Example

<html>

<body>

<?php

$x = 5985;

var_dump($x);

?>

</body>

</html>

OUTPUT:

int(5985)

PHP Float

• A float (floating point number) is a number with a decimal point or a number in

exponential form.

• In the following example $x is a float. The PHP var_dump() function returns the data

type and value:

Example

<html>

<body>

<?php

$x = 10.365;

var_dump($x);

?>

</body>

</html>

OUTPUT:

float(10.365)

PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.

$x = true;

$y = false;

Booleans are often used in conditional testing. You will learn more about conditional testing

in a later chapter of this tutorial.

PHP Array

• An array stores multiple values in one single variable:

• An array is a special variable, which can hold more than one value at a time.

• If you have a list of items (a list of car names, for example), storing the cars in

single variables could look like this:

$cars1 = "Volvo";

$cars2 = "BMW";

$cars3 = "Toyota";

• However, what if you want to loop through the cars and find a specific one? And

what if you had not 3 cars, but 300?

• The solution is to create an array!

• An array can hold many values under a single name, and you can access the values by

referring to an index number.

Example

<html>

<body>

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

</body>

</html>

OUTPUT:

I like Volvo, BMW and Toyota.

Create an Array in PHP

• In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

• Indexed arrays - Arrays with a numeric index

• Associative arrays - Arrays with named keys

• Multidimensional arrays - Arrays containing one or more arrays

Variables

• Variables are "containers" for storing information.

• Creating (Declaring) PHP Variables

• In PHP, a variable starts with the $ sign, followed by the name of the variable:

Example

<html>

<body>

<?php

$txt = "Hello world!";

$x = 5; Output:

$y = 10.5;

 Hello world!

echo $txt; 5

echo "
"; 10.5

echo $x;

echo "
";

echo $y;

?>

</body>

</html>

After the execution of the statements above, the variable $txt will hold the value Hello world!,

the variable $x will hold the value 5, and the variable $y will hold the value 10.5.

Note: When you assign a text value to a variable, put quotes around the value.

Note: Unlike other programming languages, PHP has no command for declaring a variable. It

is created the moment you first assign a value to it.

Rules for PHP variables:

A variable can have a short name (like x and y) or a more descriptive name (age, carname,

total_volume).

• A variable starts with the $ sign, followed by the name of the variable

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A- z, 0-9,

and _)

• Variable names are case-sensitive ($age and $AGE are two different variables)

Output Variables

• The PHP echo statement is often used to output data to the screen.

The following example will show how to output text and a variable:

Example

<html>

<body>

<?php

$txt = "MY FIRST PHP";

echo "I love $txt!";

?>

</body>

</html>

Example

<html>

<body>

<?php

$txt = "MY FIRST";

echo I love " . $txt . "!";

?>

</body> </html>

Example

<html>

<body>

<?php

$x = 5;

$y = 4;

echo $x + $y;

?>

</body>

</html>

PHP Variables Scope

• In PHP, variables can be declared anywhere in the script.

• The scope of a variable is the part of the script where the variable can be

referenced/used.

PHP has three different variable scopes:

• local

• global

• static

Global and Local Scope

A variable declared outside a function has a GLOBAL SCOPE and can only be accessed

outside a function:

Example

<html>

<body>

Output:
MY FIRST PHP

Output:

MY FIRST PHP

Output:

9

<?php

$x = 5; // global scope

function myTest()

{

// using x inside this function will generate an error

echo "<p>Variable x inside function is: $x</p>";

}

myTest();

echo "<p>Variable x outside function is:

$x</p>"; ?>

</body>

</html>

OUTPUT:

Variable x inside function is:

Variable x outside function is: 5

A variable declared within a function has a LOCAL SCOPE and can only be accessed within that

function:

Example

<html>

<body>

<?php

function myTest() {

$x = 5; // local scope

echo "<p>Variable x inside function is: $x</p>";

}

myTest();

// using x outside the function will generate an

error echo "<p>Variable x outside function is:

$x</p>"; ?>

</body>

</html>

OUTPUT:

Variable x inside function is: 5

Variable x outside function is:

The global Keyword

• The global keyword is used to access a global variable from within a function.

• To do this, use the global keyword before the variables (inside the function):

Example

<html>

<body>

<?php

$x = 5;

Output:

15

$y = 10;

function myTest() {

global $x, $y; $y

= $x + $y;

}

myTest(); // run function

echo $y; // output the new value for variable

$y ?>

</body>

</html>

The static Keyword

Normally, when a function is completed/executed, all of its variables are deleted. However,

sometimes we want a local variable NOT to be deleted. We need it for a further job.

To do this, use the static keyword when you first declare the variable:

Example

<html>

<body>

<?php

function myTest() {

static $x = 0;

echo $x;

$x++;

}

myTest();

echo "
";

myTest();

echo "
";

myTest();

?>

</body>

</html>

echo and print Statements

• In PHP there are two basic ways to get output: echo and print.

• In this tutorial we use echo (and print) in almost every example. So, this chapter

contains a little more info about those two output statements.

• echo and print are more or less the same. They are both used to output data to the

screen.

• The differences are small: echo has no return value while print has a return value

of 1 so it can be used in expressions. echo can take multiple parameters (although such

usage is rare) while print can take one argument. echo is marginally faster than print.

echo Statement

The echo statement can be used with or without parentheses: echo or echo().

Output:

0

1

2

Display Text

The following example shows how to output text with the echo command (notice that the text can

contain HTML markup):

Example

<html>

<body>

<?php

echo "<h2>PHP is Fun!</h2>";

echo "Hello world!
";

echo "I'm about to learn PHP!
";

echo "This ", "string ", "was ", "made ", "with multiple

parameters."; ?>

</body> </html>

OUTPUT:

PHP is Fun!

Hello world!

I'm about to learn PHP!

This string was made with multiple parameters.

Display Variables

The following example shows how to output text and variables with the echo statement:

Example

<html>

<body>

<?php

$txt1 = "Learn PHP"; $txt2

= "W3Schools.com"; $x =

5;

$y = 4;

echo "<h2>" . $txt1 . "</h2>";

echo "Study PHP at " . $txt2 . "
";

echo $x + $y;

?>

</body>

</html>

OUTPUT:

Learn PHP

Study PHP at W3Schools.com 9

The PHP print Statement

• The print statement can be used with or without parentheses: print or print().

Display Text

The following example shows how to output text with the print command (notice that the text

can contain HTML markup):

Example

<html>

<body>

<?php

print "<h2>PHP is Fun!</h2>";

print "Hello world!
";

print "I'm about to learn

PHP!"; ?>

</body>

</html>

OUTPUT:

PHP is Fun!

Hello world!

I'm about to learn PHP!

Display Variables

The following example shows how to output text and variables with the print statement:

Example

<html>

<body>

<?php

$txt1 = "Learn PHP";

$txt2= "MY PHP";

$x = 5;

$y = 4;

print "<h2>" . $txt1 . "</h2>";

print "Study PHP at " . $txt2 . "
";

print $x +$y;

?>

</body>

</html>

OUTPUT:

Learn PHP

Study PHP at MY PHP 9

PHP Object

• An object is a data type which stores data and information on how to process that data.

• In PHP, an object must be explicitly declared.

• First we must declare a class of object. For this, we use the class keyword. A class is

a structure that can contain properties and methods:

Example

<html>

<body>

<?php

class Car

{

function Car()

{

$this->model = "VW";

}

}

// create an object

$herbie = new Car();

// show object properties

echo

$herbie->model; ?>

</body>

</html>

OUTPUT:

VW

PHP NULL Value

• Null is a special data type which can have only one value: NULL.

• A variable of data type NULL is a variable that has no value assigned to it.

• If a variable is created without a value, it is automatically assigned a value of NULL.

• Variables can also be emptied by setting the value to NULL:

Example

<html>

<body>

<?php

$x = "Hello world!";

$x = null;

var_dump($x);

?>

</body>

</html>

OUTPUT:

NULL

Constants

• Constants are like variables except that once they are defined they cannot be changed

or undefined.

• PHP Constants

• A constant is an identifier (name) for a simple value. The value cannot be

changed during the script.

• A valid constant name starts with a letter or underscore (no $ sign before the constant

name).

Note: Unlike variables, constants are automatically global across the entire script.

Create a PHP Constant

• To create a constant, use the define() function.

Syntax

define(name, value, case-insensitive)

Parameters:

• name: Specifies the name of the constant

• value: Specifies the value of the constant

• case-insensitive: Specifies whether the constant name should be case-

insensitive. Default is false

The example below creates a constant with a case-sensitive name:

Example

<html>

<body>

<?php

// case-sensitive constant name

define("GREETING", "Welcome to MY PHP!");

echo GREETING;

?>

</body>

</html>

OUTPUT:

Welcome to MY PHP!

The example below creates a constant with a case-insensitive name:

Example

<html>

<body>

<?php

// case-insensitive constant name

define("GREETING", "Welcome to MY PHP!", true);

echo greeting;

?>

</body>

</html>

OUTPUT:

Welcome to MY PHP!

Constants are Global

• Constants are automatically global and can be used across the entire script.

• The example below uses a constant inside a function, even if it is defined outside the

function:

Example

<html>

<body>

<?php

define("GREETING", "Welcome to MY PHP!");

function myTest()

 {

echo GREETING;

}

myTest();

?>

</body>

</html>

OUTPUT:

Welcome to MY PHP!

PHP Operators

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Increment/Decrement operators

• Logical operators

• String operators

• Array operators

PHP Arithmetic Operators

• The PHP arithmetic operators are used with numeric values to perform common

arithmetical operations, such as addition, subtraction, multiplication etc.

Operator

Name

Example

Result

+

Addition

$x + $y

Sum of $x and $y

-

Subtraction

$x - $y

Difference of $x and $y

*

Multiplication

$x * $y

Product of $x and $y

/

Division

$x / $y

Quotient of $x and $y

%

Modulus

$x % $y

Remainder of $x divided by $y

**

Exponentiation

$x ** $y

Result of raising $x to the $y'th power

PHP Assignment Operators

• The PHP assignment operators are used with numeric values to write a value to a

variable.

• The basic assignment operator in PHP is "=". It means that the left operand gets set to the

value of the assignment expression on the right.

Expressions Explanation

x = y The left operand gets set to the value of the expression on the right

x = x + y

Addition

x = x - y

Subtraction

x = x * y

Multiplication

x = x / y

Division

x = x % y

Modulus

PHP Comparison Operators

• The PHP comparison operators are used to compare two values (number or string):

Operator Name Example Result

===

Identical

$x === $y

Returns true if $x is equal to $y, and they are of

== Equal $x == $y Returns true if $x is equal to $y the same type

!=

Not equal

$x != $y

Returns true if $x is not equal to $y

<>

Not equal

$x <> $y

Returns true if $x is not equal to $y

!==

Not identical

$x !== $y

Returns true if $x is not equal to $y, or they are not of

the same type

>

Greater than

$x > $y

Returns true if $x is greater than $y

<

Less than

$x < $y

Returns true if $x is less than $y

>=

Greater than or equal

to

$x >= $y

Returns true if $x is greater than or equal to $y

<=

Less than or equal

To

$x <= $y

Returns true if $x is less than or equal to $y

PHP Increment / Decrement Operators

• The PHP increment operators are used to increment a variable's value.

• The PHP decrement operators are used to decrement a variable's value.

Operator

Name

Description

++$x

Pre-increment

Increments $x by one, then returns $x

$x++

Post-increment

Returns $x, then increments $x by one

--$x

Pre-decrement

Decrements $x by one, then returns $x

$x--

Post-decrement

Returns $x, then decrements $x by one

PHP Logical Operators

• The PHP logical operators are used to combine conditional statements.

Operator

Name

Example

Result

And

And

$x and $y

True if both $x and $y are true

Or

Or

$x or $y

True if either $x or $y is true

&&

And

$x && $y

True if both $x and $y are true

Xor

Xor

$x xor $y

True if either $x or $y is true, but not both

||

Or

$x || $y

True if either $x or $y is true

!

Not

!$x

True if $x is not true

PHP String Operators

• PHP has two operators that are specially designed for strings.

Operator

Name

Example Result

.

Concatenation

$txt1 . $txt2 Concatenation of $txt1 and

$txt2

.=

Concatenation

assignment

$txt1 .= $txt2 Appends $txt2 to $txt1

PHP Array Operators

• The PHP array operators are used to compare arrays.

Operator Name Example Result

==

Equality

$x == $y

Returns true if $x and $y have the same key/value pairs

+ Union $x+$y Union of $x and $y

===

Identity

$x ===

$y

Returns true if $x and $y have the same key/value pairs in

the same order and of the same types

!=

Inequality

$x != $y

Returns true if $x is not equal to $y

<>

Inequality

$x <> $y

Returns true if $x is not equal to $y

!==

Non-

identity

$x !== $y

Returns true if $x is not identical to $y

PHP Conditional Statements

• Very often when you write code, you want to perform different actions for different

conditions. You can use conditional statements in your code to do this.

In PHP we have the following conditional statements:

• if statement - executes some code if one condition is true

• if...else statement - executes some code if a condition is true and another code if that

condition is false

• if...elseifelse statement - executes different codes for more than two conditions

• switch statement - selects one of many blocks of code to be executed

The if Statement

• The if statement executes some code if one condition is true.

Syntax

if (condition) {

code to be executed if condition is true;

}

The example below will output "Have a good day!" if the current time (HOUR) is less

than 20:

Example

<html>

<body>

<?php

$t = date("H");

if ($t < "20") {

echo "Have a good day!";

}

?>

</body>

</html>

OUTPUT:

Have a good day!

The if...else Statement

The ifelse statement executes some code if a condition is true and another code

if that condition is false.

Syntax

if (condition) {

code to be executed if condition is true;

} else {

code to be executed if condition is false;

}

The example below will output "Have a good day!" if the current time is less than 20, and

"Have a good night!" otherwise:

Example

<html>

<body>

<?php

$t = date("H");

if ($t < "20")

{

echo "Have a good day!";

}

Else

 {

echo "Have a good night!";

}

?>

</body>

</html>

OUTPUT:

Have a good day!

The if... elseifelse Statement

The if.... elseif... else statement executes different codes for more than two conditions.

Syntax

if (condition) {

code to be executed if this condition is true;

} elseif (condition) {

code to be executed if this condition is true;

} else {

code to be executed if all conditions are false;

}

The example below will output "Have a good morning!" if the current time is less than 10, and

"Have a good day!" if the current time is less than 20. Otherwise it will output "Have a good

night!":

Example

<html>

<body>

<?php

$t = date("H");

echo "<p>The hour (of the server) is " . $t;

echo ", and will give the following message:</p>";

if ($t < "10")

{

echo "Have a good morning!";

}

 elseif ($t < "20")

 {

echo "Have a good day!";

}

Else

 {

echo "Have a good night!";

}

?>

</body>

</html>

OUTPUT:

The hour (of the server) is 01, and will give the following message: Have a

good morning!

The switch Statement

• The switch statement is used to perform different actions based on

different conditions.

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n)

{

 case label1:

code to be executed if n=label1;

break;

case label2:

code to be executed if n=label2;

break;

case label3:

code to be executed if n=label3;

break;

...

default:

code to be executed if n is different from all labels;

}

This is how it works: First we have a single expression n (most often a variable), that is

evaluated once. The value of the expression is then compared with the values for each case in

the structure. If there is a match, the block of code associated with that case is executed. Use

break to prevent the code from running into the next case automatically. The default statement is

used if no match is found.

Example

<html>

<body>

<?php

$favcolor = "red";

switch ($favcolor)

 {

case "red":

echo "Your favorite color is red!";

break;

case "blue":

echo "Your favorite color is blue!";

break;

case "green":

echo "Your favorite color is green!";

break;

default:

echo "Your favorite color is neither red, blue, nor green!";

}

?>

</body>

</html>

OUTPUT:

Your favorite color is red!

PHP Loops

Often when you write code, you want the same block of code to run over and over again in a row.

Instead of adding several almost equal code-lines in a script, we can use loops to perform a task

like this.

In PHP, we have the following looping statements:

• while- loops through a block of code as long as the specified condition is true

• do...while - loops through a block of code once, and then repeats the loop as long as

the specified condition is true

• for- loops through a block of code a specified number of times

• foreach- loops through a block of code for each element in an array

The PHP while Loop

• The while loop executes a block of code as long as the specified condition is true.

Syntax

while (condition is true)

{

code to be executed;

}

The example below first sets a variable $x to 1 ($x = 1). Then, the while loop will continue to

run as long as $x is less than, or equal to 5 ($x <= 5). $x will increase by 1 each time the loop

runs ($x++):

Example

<html>

<body>

<?php

$x = 1;

while($x <= 5)

{

echo "The number is: $x
";

 $x++;

}

?>

</body>

</html>

OUTPUT:

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

The PHP do...while Loop

The do...while loop will always execute the block of code once, it will then check the

condition, and repeat the loop while the specified condition is true.

Syntax

do {

code to be executed; }

while (condition is true);

The example below first sets a variable $x to 1 ($x = 1). Then, the do while loop will write

some output, and then increment the variable $x with 1. Then the condition is checked (is $x less

than, or equal to 5?), and the loop will continue to run as long as $x is less than, or equal to 5:

Example

<html>

<body>

<?php

$x = 1;

do {

echo "The number is: $x
";

$x++;

}

while ($x <=);

?>

</body>

</html>

OUTPUT:

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

Notice that in a do while loop the condition is tested AFTER executing the statements within the

loop. This means that the do while loop would execute its statements at least once, even if the

condition is false the first time.

The example below sets the $x variable to 6, then it runs the loop, and then the

condition is checked:

Example

<html>

<body>

<?php

$x = 6;

Do

 {

echo "The number is: $x
";

$x++;

}

 while ($x <=);

?>

</body>

</html>

OUTPUT:

The number is: 6

for Loops

• PHP for loops execute a block of code a specified number of times.

The PHP for Loop

• The for loop is used when you know in advance how many times the script should

run.

Syntax

for (init counter; test counter; increment counter) {

code to be executed;

}

Parameters:

• init counter: Initialize the loop counter value

• test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the loop

continues. If it evaluates to FALSE, the loop ends.

• increment counter: Increases the loop counter value The

example below displays the numbers from 0 to 10: Example

<html>

<body>

<?php

for ($x = 0; $x <= 10; $x++)

{

echo "The number is: $x
";

}

?>

</body>

</html>

OUTPUT:

The number is: 0

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

The number is: 6

The number is: 7

The number is: 8

The number is: 9

The number is: 10

The PHP foreach Loop

• The foreach loop works only on arrays, and is used to loop through each

key/value pair in an array.

Syntax

foreach ($array as $value)

{

code to be executed;

}

• For every loop iteration, the value of the current array element is assigned to

$value and the array pointer is moved by one, until it reaches the last array element.

• The following example demonstrates a loop that will output the values of the given

array ($colors):

Example

<html>

<body>

<?php

$colors = array("red", "green", "blue", "yellow");

foreach ($colors as $value)

{

echo "$value
";

}

?>

</body>

</html>

OUTPUT:

red green blue yellow

	 Introduction to PHP & Features
	 Data Types
	 Operators
	Introduction to PHP & Features
	Example
	What You Should Already Know
	What is PHP?
	What is a PHP File?
	What Can PHP Do?
	Why PHP?
	To start using PHP, you can:
	Use a Web Host with PHP Support
	However, if your server does not support PHP, you must:
	PHP Scripts Basic PHP
	Syntax
	Example (1)
	Comments in PHP
	Comments can be used to:
	Example (2)
	Example (3)
	Example (4)
	Data Types
	PHP String
	Example (5)
	OUTPUT:
	String Functions
	Example (6)
	OUPUT:
	Count The Number of Words in a String
	Example (7)
	OUTPUT: (1)
	Reverse a String
	Example (8)
	OUTPUT: (2)
	Search For a Specific Text Within a String
	Example (9)
	OUTPUT: 6
	Replace Text Within a String
	Example (10)
	OUTPUT: (3)
	PHP Integer
	Rules for integers:
	Example (11)
	OUTPUT: (4)
	PHP Float
	Example (12)
	OUTPUT: (5)
	PHP Boolean
	PHP Array
	Example (13)
	OUTPUT: (6)
	Create an Array in PHP
	array();
	Variables
	Rules for PHP variables:
	Output Variables
	Example (14)
	Example (15)
	Example (16)
	PHP Variables Scope
	Global and Local Scope
	Example (17)
	OUTPUT: (7)
	Example (18)
	OUTPUT: (8)
	The global Keyword
	Example (19)
	The static Keyword
	Example (20)
	echo and print Statements
	echo Statement
	Display Text
	Example (21)
	OUTPUT: (9)
	Display Variables
	Example (22)
	OUTPUT: (10)
	The PHP print Statement
	Display Text (1)
	Example (23)
	OUTPUT: (11)
	Display Variables (1)
	Example (24)
	OUTPUT: (12)
	PHP Object
	Example (25)
	OUTPUT: (13)
	PHP NULL Value
	Example (26)
	OUTPUT: (14)
	Constants
	• PHP Constants
	Create a PHP Constant
	Syntax (1)
	Parameters:
	Example (27)
	OUTPUT: (15)
	Example (28)
	OUTPUT: (16)
	Constants are Global
	Example (29)
	OUTPUT: (17)
	PHP Operators
	PHP divides the operators in the following groups:
	PHP Arithmetic Operators
	PHP Assignment Operators
	PHP Comparison Operators
	PHP Increment / Decrement Operators
	PHP Logical Operators
	PHP String Operators
	PHP Array Operators
	PHP Conditional Statements
	In PHP we have the following conditional statements:
	The if Statement
	Syntax (2)
	Example (30)
	OUTPUT: (18)
	The if...else Statement
	Syntax (3)
	Example (31)
	OUTPUT: (19)
	Syntax (4)
	Example (32)
	OUTPUT: (20)
	The switch Statement
	Syntax (5)
	Example (33)
	OUTPUT: (21)
	PHP Loops
	The PHP while Loop
	Syntax (6)
	Example (34)
	OUTPUT: (22)
	The PHP do...while Loop
	Syntax (7)
	Example (35)
	OUTPUT: (23)
	Example (36)
	OUTPUT: (24)
	for Loops
	The PHP for Loop
	Syntax (8)
	Parameters: (1)
	OUTPUT: (25)
	Syntax (9)
	Example (37)
	OUTPUT: (26)

